Biochemistry

© Copyright 1980 by the American Chemical Society

Volume 19, Number 7

April 1, 1980

On the Mechanism of 2'-Deoxyuridylate Hydroxymethylase[†]

Michael G. Kunitani and Daniel V. Santi*

ABSTRACT: dUMP hydroxymethylase from SP01-infected Bacillus subtilis has been purified 160-fold by chromatography on DEAE-cellulose and ethylagarose. The enzyme catalyzes exchange of the 5-hydrogen of dUMP for protons of water in the presence or absence of the cofactor CH₂-H₄folate. Upon treatment with FdUMP and CH₂-H₄folate, an isolable covalent complex is formed which is believed to be structurally similar to a steady-state intermediate of the normal reaction. The FdUMP-CH₂-H₄folate-dUMP hydroxymethylase complex is stable toward denaturation with sodium dodecyl sulfate and shows a subunit molecular weight of 46 000. By analogy with chemical models and studies of dTMP synthetase, a mechanism is proposed for the reaction catalyzed by dUMP hydroxymethylase.

dump hydroxymethylase catalyzes the conversion of dump and CH2-H4folate to HmdUMP and H4folate. The enzyme is found in Bacillus subtilis infected with certain bacteriophage (Hemphill & Whiteley, 1975) and is analogous to the dCMP hydroxymethylase found in T-even phage infected Escherichia coli. dTMP synthetase also catalyzes a similar reaction except that after transfer the 1-carbon unit is reduced by H₄folate, resulting in the products dTMP and H₂folate. Because all three enzymes utilize the same cofactor and all involve electrophilic substitution at the 5 position of the pyrimidine heterocycle, it is reasonable to believe that they might share common mechanistic features. In particular, model chemical studies and precedent established with dTMP synthetase have resulted in the proposal that all such reactions proceed by initial nucleophilic attack at the 6 position of the pyrimidine heterocycle; in this manner, the 5 position is made sufficiently electronegative for subsequent reaction with the electrophile [for a review see Pogolotti & Santi (1977)].

We have partially purified dUMP hydroxymethylase from SP01-infected B. subtilis and have examined aspects of its catalytic properties and interaction with FdUMP. The results described here demonstrate that salient features of the mechanism of this enzyme are quite similar to those which have been established with dTMP synthetase. Further, an analogous mechanism is proposed for dCMP hydroxymethylase.

Materials and Methods

Bacillus subtilis 3610 thy tlr and B. subtilis phage SP01 were a gift from A. R. Price. Nitrocellulose filters (Bac-T-flex;

2.4 cm) were purchased from Schleicher & Schuell. Ethylagarose (Er-el et al., 1972) was obtained from Miles Biochemicals and HmdUrd was obtained from Calbiochem. dUMP was obtained from P-L Biochemicals and FdUrd was a gift from the Drug Development Branch of the National Cancer Institute. (±)-L-H₄folate was prepared by the method of Hatefi et al. (1960). The (\pm) -L-[6-3H]H₄folate used was the preparation previously described (Santi et al., 1976). [2-14C]dUrd, [5-3H]dUrd, [6-3H]dUrd, and [6-3H]FdUrd were obtained from Moravek Biochemicals. Nucleoside 5'monophosphates were prepared by using dThd kinase and purified as previously described (Wataya & Santi, 1977); further purification was performed by high-performance liquid chromatography (LC) using the systems described by Garrett et al. (1977) or by reverse-phase LC on a Lichrosorb C₁₈ column (Altex; 4.6×250 mm) using 5.0 mM (n-Bu)₄N⁺-HSO₄ and 5.0 mM potassium phosphate (pH 7.0) as the eluant; the flow rate was 1.0 mL/min and the effluent was monitored at 254 nm with an ISCO UA-5 spectrophotometer. Protein concentration was determined by the method of Bradford (1976). Buffer A refers to a solution containing 20 mM potassium phosphate (pH 7.0) and 10 mM 2-mercaptoethanol. Radioisotopes were counted in a Nuclear Chicago Isocap 300 using Aquasol II (New England Nuclear) or 0.4% Omnifluor (New England Nuclear) in 25% (v/v) Triton X-114 in xylene.

Enzyme Assays. dUMP hydroxymethylase activity was assayed at ambient temperature (21-23 °C) in a mixture containing in 0.25 mL of 0.1 M Tris-HCl (pH 7.5), 2.5 mM MgCl₂, 75 mM 2-mercaptoethanol, 6 mM formaldehyde, 0.5 mM (\pm)-L-H₄folate, 0.04 mM [5-3H,2-14C]dUMP (10 $mCi/mmol {}^{14}C; {}^{3}H/{}^{14}C dpm = 6.7), and (1-50) \times 10^{-5} unit$ of enzyme. Five to eight (50-30 μ L) aliquots were removed at intervals and assayed for tritium release as previously described (Pogolotti et al., 1979). One unit of enzyme activity is defined as the amount required to catalyze release of tritium from 1 μ mol of dUMP per min.

[†] From the Department of Biochemistry and Biophysics and the Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143. Received October 5, 1979. This work was supported by U.S. Public Health Service Grant CA 14394 from the National Cancer Institute.

^{*}Correspondence should be addressed to this author. He is the recipient of a National Institutes of Health Career Development Award.

1272 BIOCHEMISTRY KUNITANI AND SANTI

The radioactive ternary FdUMP-CH2-H4folate-enzyme complex was formed in the mixture described above except specified amounts of [6-3H]FdUMP (3.8 Ci/mmol) or [6-³H]H₄folate (1.0 Ci/mmol) were used instead of labeled dUMP and unlabeled H₄folate, respectively; mixtures utilizing [6-3H]H₄folate contained 0.08 mM unlabeled FdUMP instead of dUMP. Unless otherwise specified, incubations were performed for 30 min at ambient temperature. Controls omitted the nonradioactive ligand, either FdUMP or CH₂-H₄folate. The complex was isolated by adsorption to nitrocellulose filtration as previously described for dTMP synthetase (Santi et al., 1974) except 50 mM phosphate was used for washing and filters were dissolved and counted in Aquasol II. Alternatively, gel filtration was used to separate bound and free ligands. This was performed by applying ~0.12 mL of the reaction mixture to a Sephadex G-25 column (1.0 \times 28 cm) equilibrated with 10 mM potassium phosphate (pH 7.0), 90 mM NaCl, 0.1 mM EDTA, 10 mM 2-mercaptoethanol, and 10% (v/v) glycerol; elution was performed with the same buffer system. Fractions (0.5 mL) were collected and counted in the Triton X-114 system. For assays of the denatured complex, a 10% solution of NaDodSO4 was added to the preformed complex to give a final concentration of 3%; after 30 min at room temperature, bound and free radioactive ligands were separated by gel filtration.

Enzyme Purification. Twelve liters of B. subtilis cells was grown to a density of 10^8 colony-forming units ($A_{660} = 0.9$) and infected with SP01 phage at a multiplicity of 5 phages/cell (Dunham, 1973). After 25 min at 37 °C, cells were rapidly chilled, harvested, and washed with cold 20 mM potassium phosphate (pH 7.0) as described by Alegria et al. (1968). The cells (31 g) were resuspended in 35 mL of buffer A and disrupted by using an Eaton press. After centrifugation at 10⁴g for 10 min, 20 mL of 5% streptomycin was added to the supernatant, and the precipitate was removed by centrifugation at 20000g for 10 min. The cell extract (75 mL; 6.4 mg of protein/mL) was diluted with 65 mL of cold water to give a solution of 5 mmho/cm and applied to a DEAE-cellulose column (1.5 \times 30 cm) previously equilibrated with buffer A. After being washed with 100 mL of buffer A, the column was eluted with 300 mL of a linear NaCl gradient (0-0.70 M) in the same buffer. Fractions (5 mL) possessing over 8×10^{-3} unit/mg (22-25 mmho/cm) were combined (30 mL; 1.05 mg of protein/mL) and diluted with water to give a solution with a conductivity of 5.5 mmho/cm. This was applied to an ethylagarose column (1.0 × 10.5 cm) previously equilibrated with buffer A-10 mM EDTA. After being washed with 16 mL of the equilibration buffer, protein was eluted with 40 mL of a linear NaCl gradient (60-640 mM) in the same buffer. Fractions (2 mL) were collected, and those containing dUMP hydroxymethylase activity (13-16 mmho/cm) were combined to give a 160-fold purified preparation. Preparations were usually stored at -80 °C after DEAE-cellulose chromatography and further purified in smaller portions shortly before use (see Results). In such cases protein was adsorbed to a smaller ethylagarose column (0.7 \times 2.6 cm), washed with 7 mL of equilibration buffer, and eluted with 20 mL of the aforementioned NaCl gradient.

Gel Electrophoresis. Protein (10-20 μ g/0.1 mL) was precipitated by addition of 0.25 volume of cold 50% trichloroacetic acid and collected by centrifugation at 3000g for 5 min. The precipitate was washed with 0.2 mL of cold acetone, collected by centrifugation, and dried under vacuum. The sample was dissolved in 50 μ L of a solution containing 7% NaDodSO₄, 10% 2-mercaptoethanol, 20% glycerol, and

p act. hits/mg) purifi	yield n (%)
0×10^{-3} 3×10^{-2} 12	100 5 82 27
٦	4×10^{-1} 158

0.25 M Tris-HCl (pH 6.8) heated at 85 °C for 2 min. After twofold dilution with water, portions of the sample were applied to wells of a vertical slab gel apparatus ($14~\rm cm^2 \times 0.8~\rm mm$) containing 0.1% NaDodSO₄–9% acrylamide as described by Laemmli (1970) and run for 2.5 h at 20 mA. Fluorography was performed as described by Bonner & Laskey (1974) using Kodak X-Omat R film. Gels were stained with Coomassie Blue (Laemmli, 1970) and scanned with an E-C densitometer. Prereplicative bacteriophage T4 proteins, a gift from P. Z. O'Farrell, were used as molecular weight standards (O'Farrell & Gold, 1973).

Results

dUMP hydroxymethylase from SP01-infected B. subtilis was purified 158-fold in 27% yield by chromatography on DEAE-cellulose and ethylagarose (Table I). Other procedures attempted for purification were unsuccessful, largely because of losses encountered during manipulations or storage. As examples, chromatography on Sephacryl-200 or phenylagarose resulted in over 80% loss in yield and large decreases in specific activity. Likewise, NH₄SO₄ precipitation, dialysis and ultrafiltration led to large losses in recovery and specific activity. The stability of enzyme activity on storage was variable but in general decreased with increasing purity of the preparation. Preparations of highest purity lost significants amounts of activity within 2 weeks at 0, -20 (with or without 20% glycerin), and -80 °C. At -80 °C, the DEAE-cellulose purified preparation lost 20 and 50% activity at 2 and 4 weeks, respectively. We found it most advantageous if the enzyme was stored at -80 °C after DEAE-cellulose purification and chromatographed on ethylagarose shortly before use (see Materials and Methods). The enzyme preparations used in the experiments described below had a specific activity of at least 0.05 unit/mg of protein.

The assay described in this paper is based on the obligatory release of the 5-hydrogen of dUMP into water which accompanies hydroxymethylation. By use of [2-14C,5-3H]dUMP, tritium release is monitored as the ³H/¹⁴C remaining after evaporation of water; this double-label technique, utilized for dTMP synthetase (Pogolotti et al., 1979), is highly sensitive and not subject to manipulative errors. Excess formaldehyde is included in the assay mixture to minimize the reverse reaction; as the product H₄folate is formed, it is rapidly converted to the substrate CH₂-H₄folate. Under the conditions described, initial velocities of tritium release were linear vs. time to \sim 20% reaction and vs. enzyme to at least 5×10^{-4} unit. When enzyme was omitted or preincubated with excess FdUMP (see below), there was no detectable tritium release; omission of CH₂-H₄folate decreased the rate of tritium release by over 98%. Under the standard assay conditions for the tritium release assay, the $K_{\rm m}$ for dUMP was 4.6 μ M.

The only other enzyme which is known to catalyze a CH₂-H₄folate-dependent release of tritium from the 5 position of dUMP is dTMP synthetase. Although the strain of B. subtilis used should not possess this activity, product analysis was performed to ensure that HmdUMP was the sole reaction product. [2-¹⁴C,5-³H]dUMP, excess CH₂-H₄folate, and hydroxymethylase were incubated for 16 h, mixed with unlabeled

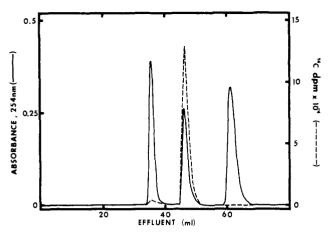


FIGURE 1: Reverse-phase chromatography of dUMP hydroxymethylase incubation. A mixture of $[2^{-14}\text{C},5^{-3}\text{H}]\text{dUMP} (^3\text{H}/^{14}\text{C}=5.80)$, excess CH₂-H₄folate, and hydroxymethylase (2.4 × 10⁻³ unit/mL) were incubated as described under Materials and Methods for 16 h. Radioactivity was adsorbed and eluted from a small DEAE-cellulose column (Pogolotti et al., 1979), lyophilized, mixed with unlabeled markers of dUMP, HmdUMP, and dTMP, and chromatographed on reverse-phase LC. Compounds were monitored by absorbance at 254 nm (—), and radioactivity was monitored by collecting fractions (1.3 mL) and counting (---).

markers of dUMP, HmdUMP, and dTMP, and chromatographed on LC (Figure 1). Of the recovered ¹⁴C radioactivity (80% overall yield), 3% eluted as dUMP (RV = 35 mL), 97% with HmdUMP (RV = 46 mL), and less than 0.07% as dTMP (RV = 61 mL). It was also observed that the ${}^{3}H/{}^{14}C$ in the small amount of dUMP recovered had decreased from 5.80 to 0.06 (see below). In another experiment, product analysis by LC was directly compared to the 5-tritium release assay. By use of standard conditions, aliquots were removed at five intervals over a period of 60 min; 25 µL was assayed for tritium release and 50 µL was processed for LC. For the latter, the aliquot was added to 0.5 volume of an aqueous solution containing unlabeled HmdUMP and dUMP markers and 2 volumes of CHCl3. After vortexing and centrifugation, the aqueous layer was chromatographed on reverse-phase LC, and the fractions corresponding to dUMP and HmdUMP were collected and counted. Comparison of the ³H/¹⁴C of the combined radioactivity eluting as dUMP and HmdUMP in each aliquot to the ³H/¹⁴C obtained by the tritium release assay demonstrated that the assays were in excellent agreement. Four of the five points were sampled over the first 20 min and were within 1% of each other; the error of the last (60 min) aliquot sampled was ∼3% and, albeit acceptable, was probably due to counting error as the ³H/¹⁴C decreased from 5.8 to 1.6. In this experiment, it was also observed that the ³H/¹⁴C of the isolated dUMP decreased by a first-order process with $k = 0.42 \text{ h}^{-1}$. Over the period used for initial velocity determinations by the tritium release assay, this corresponded to 37% of the rate of hydroxymethylation of dUMP or 27% of the rate of total tritium release.

When H_4 folate and formaldehyde were omitted from the reaction mixture, the enzyme catalyzed a slow release of tritium from the 5 position of dUMP which proceeded at 1.5% the rate of tritium release in the presence of all components. This was confirmed by incubation of an excess of dUMP hydroxymethylase (0.01 unit/mL) with 2×10^{-5} M [2- 14 C,5- 3 H]dUMP, followed by reverse-phase LC; after 2 h, 70% of the tritium of the isolated dUMP was exchanged for protons of water and HmdUMP was undetectable (i.e., <0.01%). Although unlikely, it was considered possible that this slow exchange might be due to a contaminant of CH₂-H₄folate in

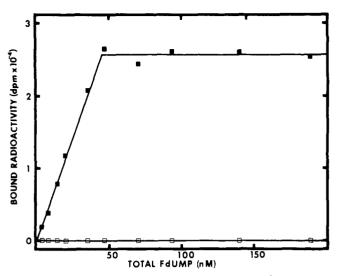


FIGURE 2: Titration of dUMP hydroxymethylase with [3 H]FdUMP in the presence (\blacksquare) or absence (\square) of CH₂-H₄folate (3.4 × 10⁻⁴ M). [$^{6-3}$ H]FdUMP (3.8 Ci/mM) was incubated with dUMP hydroxymethylase (1.1 × 10⁻⁴ unit/mL), and the complex was adsorbed on nitrocellulose filters and quantitated as described under Materials and Methods.

the enzyme preparation. Lactobacillus casei dTMP synthetase (3.3 units/mL) was incubated with 9.2×10^{-3} unit/mL of the hydroxymethylase preparation and [6-3H]dUMP (1.6 μ M; 17 Ci/mmol) for 3 h in the dark to exclude this. As before, unlabeled dUMP and dTMP markers were added, and nucleotides were separated by LC and counted; radioactivity eluting with dTMP was undetectable. Since 2×10^{-11} M dTMP was our lower limit of detection, it was concluded that CH₂-H₄folate was not a significant contaminant of our hydroxymethylase preparation.

Pretreatment of dUMP hydroxymethylase with FdUMP and excess CH₂-H₄folate results in a decrease in the rate of tritium release from [2-14C,5-3H]dUMP with complete inhibition requiring 65 nmol of FdUMP per unit of enzyme. As with the covalent FdUMP-CH₂-H₄folate-dTMP synthetase complex (Santi et al., 1974a,b), when [6-3H]FdUMP and CH₂-H₄folate are incubated with dUMP hydroxymethylase, radioactivity can be adsorbed to nitrocellulose filters under conditions where free [6-3H]FdUMP may be completely removed by washing; no radioactive complex was adsorbed when CH₂-H₄folate was omitted from the mixture. In the presence of limiting [6-3H]FdUMP and excess CH₂-H₄folate, increasing amounts of enzyme result in proportional increases in the radioactivity retained until apparent saturation is reached; from this experiment, the filtration efficiency (Yarus & Berg, 1967; Santi et al., 1974a) was calculated to be 89%. As shown in Figure 2, when [3H]FdUMP was varied in the presence of a constant amount of dUMP hydroxymethylase and excess CH₂-H₄folate, the complex retained was proportional to the [6-3H]FdUMP added, reaching saturation at 62 nmol of FdUMP per unit of enzyme. Since direct titration with [6-³H]FdUMP corresponds well with FdUMP inhibition of the catalytic activity (62 vs. 65 nmol of FdUMP per unit), it is concluded that both assays reflect binding of FdUMP to dUMP hydroxymethylase.

Formation of the [6-3H]FdUMP-CH₂-H₄folate-enzyme complex was complete within 30 s, and no loss of filter-bound radioactivity was observed for at least 3.5 h. The rate of dissociation of [3H]FdUMP from the complex was determined by adding a 200-fold excess of unlabeled FdUMP to the preformed complex in the presence of 0.5 mM CH₂-H₄folate and monitoring the loss of adsorbed protein-bound radioactivity

1274 BIOCHEMISTRY KUNITANI AND SANTI

with time (Santi et al., 1974b); upon dissociation, the bound radioactive ligand is diluted into a large nonradioactive pool and does not significantly recombine with the enzyme. At 25 °C, [${}^{3}H$]FdUMP dissociates from the ternary complex with a first-order rate constant of 8.0×10^{-3} min⁻¹.

The ternary FdUMP-CH₂-H₄folate-dUMP hydroxymethylase complex could also be separated from free ligands by gel filtration on Sephadex G-25. By use of an excess of [3H]FdUMP and CH₂-H₄folate to form the complex, macromolecular bound radioactivity in the void volume corresponded to 1.1 nmol of FdUMP per mg of protein; in the absence of CH₂-H₄folate all radioactivity eluted with free ligand. In a parallel experiment the ternary complex formed with [3H]FdUMP was denatured with 3% NaDodSO₄ prior to gel filtration; the radioactivity in the void volume corresponded to 0.97 nmol of FdUMP per mg of protein, in good agreement with the value obtained with the native complex. Similarly, by use of [6-3H]H₄folate to form the ternary complex, the denatured complex isolated by gel filtration possessed 0.95 nmol of H₄folate per mg of protein. NaDodSO₄ gel electrophoresis of the complex formed with either [3H]FdUMP or [3H]H₄folate showed a single radioactive band migrating with a M, of 46 000; in the absence of either unlabeled ligand, the radioactive band could not be detected. When the gel was scanned after staining, it was determined that $\sim 30\%$ of the protein contained in the 158-fold purified preparation migrated with the labeled ternary complex.

Discussion

Release of tritium from [2-14C,5-3H]dUMP serves as a convenient assay for dUMP hydroxymethylase. In the presence of CH₂-H₄folate, 73% of the total tritium released during initial periods was due to HmdUMP formation and 27% resulted from exchange of the 5-tritium of dUMP for protons of water. The exchange reaction could be direct or due to reversal of hydroxymethylation. However, because of the excess formaldehyde used in the assay, almost all (>99.8%) of the product H₄folate would be trapped as the substrate CH₂-H₄folate; if the exchange reaction is due to reversal of hydroxymethylation, it is likely that this occurs while the reactants are still bound to the enzyme. If so, this would suggest that release of products from the enzyme is at least partially rate determining and that the proton released from the 5 position of dUMP exchanges with solvent protons at a rate competitive with or faster than dissociation of substrates. The enzyme also catalyzes exchange of the 5-hydrogen of dUMP for protons of water in the absence of CH₂-H₄folate at a rate which is 6% of the rate of exchange in the presence of CH₂-H₄folate. Thus, at least a portion of the observed 5-hydrogen exchange of dUMP in the presence of CH₂-H₄folate likely results without the intermediate formation of HmdUMP. In this case, the cofactor may serve to decrease the $K_{\rm m}$ for dUMP and/or increase the $V_{\rm max}$ for the exchange reaction

The dUMP hydroxymethylase catalyzed release of tritium from [2-14C,5-3H]dUMP, both from hydroxymethylation and exchange, is completely inhibited by FdUMP. When the enzyme is treated with [6-3H]FdUMP and CH₂-H₄folate or with FdUMP and CH₂-[6-3H]H₄folate, stable radioactive complexes can be isolated on nitrocellulose filters or by gel filtration; in either case, radioactive complexes could not be isolated if the unlabeled ligand was omitted. Confirmation that the complexes are due to binding of FdUMP and CH₂-H₄folate to dUMP hydroxymethylase was obtained by demonstrating a direct correspondence between the amount of ternary complex isolated and the degree of inhibition of

FIGURE 3: Proposed mechanisms for dTMP synthetase and dUMP hydroxymethylase; R = 5-phospho-2-deoxyribosyl.

enzyme activity. Formation of the [${}^{3}H$]FdUMP-CH₂-H₄-folate-enzyme complex is too rapid to monitor by manual methods, and the ternary complex formed is stable for long periods. By use of an isotope dilution technique (Santi et al., 1974b), dissociation of [${}^{3}H$]FdUMP from the ternary complex was shown to be a first-order process with $t_{1/2} = 87 \text{ min } (k = 8.0 \times 10^{-3} \text{ min}^{-1})$.

Denaturation of the ternary complex did not result in dissociation of ligands; indeed, the complex was stable to sequential treatment with Cl₃AcOH, acetone, and 7% NaDodSO₄ at 85 °C. NaDodSO₄ gel electrophoresis of the ternary complex labeled with either [³H]FdUMP or CH₂-[6-³H]H₄-folate, followed by staining and fluorography, demonstrated that the complex has a subunit molecular weight of 46 000 and that ~30% of the total protein in our purest preparation comigrated with the complex. These results conclusively establish that both FdUMP and CH₂-H₄folate are covalently bound to dUMP hydroxymethylase.

Aspects of the mechanism of dUMP hydroxymethylase may be surmised when the above findings are interpreted in view of what is known regarding model systems and the related enzyme dTMP synthetase. Direct chemical counterparts for the reactions catalyzed by dUMP hydroxymethylase are provided by studies of 5-hydrogen exchange and 5-hydroxymethylation of 1-substituted uracils (Santi & Brewer, 1968, 1973). In all cases examined, these reactions were found to require attack of a nucleophile at the 6 position of the heterocycle to activate the 5 position as an enolate or enol; after reaction with an electrophile (proton or formaldehyde), the resultant 5,6-dihydropyrimidine intermediates undergo β elimination to provide products. The currently accepted mechanism of dTMP synthetase is shown in Figure 3. An early event in catalysis involves attack at the 6 position of dUMP by a nucleophile of the enzyme to provide the cova-

FIGURE 4: Structure of the FdUMP-CH₂-H₄folate-enzyme complex formed with dTMP synthetase or dUMP hydroxymethylase.

lently bound intermediate 2. While not on the reaction pathway, 2 may react with solvent protons to form 3; reversal of these steps results in exchange of the 5-H of dUMP for protons of water in the presence or absence (Pogolotti et al., 1979) of CH₂-H₄folate. Thus, there is both chemical precedent and enzymic precedent to support the conclusion that the dUMP hydroxymethylase catalyzed exchange of the 5-H of dUMP requires nucleophilic attack at the 6 position and formation of 5,6-dihydropyrimidine intermediates. Strong support for the mechanism of formation and structure of 4 has been obtained from studies of the interaction of FdUMP with dTMP synthetase. In the presence of CH₂-H₄folate, a nucleophile of the enzyme attacks the 6 position of FdUMP and the 5 position of FdUMP then reacts with the 1-carbon unit of the cofactor. The structure of the resultant complex (Figure 4) is directly analogous to steady-state intermediate 4 formed upon reaction of 2 with CH₂-H₄folate in the normal enzymic reaction.

With exception of the rates of dissociation and the subunit molecular weight, the properties of the FdUMP-CH₂-H₄-folate-hydroxymethylase complex also have the structure depicted in Figure 4, and its formation and relevance to catalysis are analogous to what have been described for dTMP synthetase (Santi et al., 1974a; Pogolotti & Santi, 1977).

From what has been described thus far, it is reasonable to conclude that dUMP hydroxymethylase and dTMP synthetase share a common pathway up to and including formation of the putative exocyclic methylene intermediate 5. At this stage, the electrophilic carbon generated at the 6 position of the nucleotide reacts with hydride (or equivalent two electron, proton transfer) from C-6 of H₄ folate in the dTMP synthetase reaction to provide dTMP (6) and H₂folate. In the dUMP hydroxymethylase reaction, intermediate 5 would react with water to provide HmdUMP (7) and H₄folate. It is of interest that the related enzyme dCMP hydroxymethylase also catalyzes 5-H exchange of dCMP in the absence of the cofactor CH₂-H₄folate (Yeh & Greenberg, 1967). As chemical studies have shown that this reaction also proceeds via nucleophilic attack at the 6 position of the heterocycle (Wechter & Kelly, 1970; Hayatsu, 1976; Blackburn et al., 1978), it is logical to

conclude that the mechanism of dCMP hydroxymethylase is directly analogous to that which is described here for dUMP hydroxymethylase.

Acknowledgments

We thank Dr. Alan Price for providing the B. subtilis 3610 thy tlr and phage SP01. Dr. R. Meyer is acknowledged for performing computer analysis of kinetic data.

References

Alegria, A. H., Kahan, F. M., & Marmur, J. (1968) Biochemistry 7, 3179.

Blackburn, G. M., Brown, D. M., & Sloan, V. C. (1978) Nucleic Acids Res., Spec. Publ. 4, S1.

Bonner, W. M., & Laskey, R. A. (1974) Eur. J. Biochem. 46, 83.

Bradford, M. M. (1976) Anal. Biochem. 72, 248.

Dunham, L. F. T. (1973) Ph.D. Thesis, University of Michigan, Dissertation Abstract 74-3614.

Er-el, Z., Zaidenzaig, Y., & Shaltiel, S. (1972) Biochem. Biophys. Res. Commun. 49, 383.

Garrett, C., Pogolotti, A. L., Jr., & Santi, D. V. (1977) Anal. Biochem. 79, 602.

Hatefi, Y., Talbert, P. T., Osborn, M. J., & Huennekens, F. M. (1960) Biochem. Prep. 7, 89.

Hayatsu, H. (1976) Prog. Nucleic Acid Res. Mol. Biol. 16, 75-124.

Hemphill, H. E., & Whiteley, H. R. (1975) *Bacteriol. Rev.* 39, 257.

Laemmli, U. K. (1970) Nature (London) 227, 680.

O'Farrell, P. Z., & Gold, L. M. (1973) J. Biol. Chem. 248, 5499

Pogolotti, A. L., Jr., & Santi, D. V. (1977) in *Bioorganic Chemistry* (Van Tamelen, E. E., Ed.) pp 277-310, Academic Press, New York.

Pogolotti, A. L., Jr., Weill, C., & Santi, D. V. (1979) Biochemistry 18, 2794.

Santi, D. V., & Brewer, C. F. (1968) J. Am. Chem. Soc. 90, 6236

Santi, D. V., & Brewer, C. F. (1973) Biochemistry 12, 2416.
Santi, D. V., McHenry, C. S., & Perriard, E. R. (1974a)
Biochemistry 13, 467.

Santi, D. V., McHenry, C. S., & Sommer, H. (1974b) Biochemistry 13, 471.

Santi, D. V., Pena, V. A., & Lam, S. S. M. (1976) *Biochim. Biophys. Acta 438*, 324.

Wataya, Y., & Santi, D. V. (1977) Methods Enzymol. 46, 307.

Wechter, W. J., & Kelly, R. C. (1970) Collect. Czech. Chem. Commun. 35, 1991.

Yarus, M., & Berg, P. (1967) J. Mol. Biol. 28, 479.

Yeh, Y. C., & Greenberg, G. R. (1967) J. Biol. Chem. 242, 1307.